首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1246篇
  免费   233篇
  国内免费   169篇
测绘学   69篇
大气科学   82篇
地球物理   401篇
地质学   478篇
海洋学   150篇
天文学   6篇
综合类   49篇
自然地理   413篇
  2024年   1篇
  2023年   11篇
  2022年   28篇
  2021年   63篇
  2020年   52篇
  2019年   82篇
  2018年   62篇
  2017年   69篇
  2016年   65篇
  2015年   57篇
  2014年   61篇
  2013年   123篇
  2012年   65篇
  2011年   68篇
  2010年   59篇
  2009年   90篇
  2008年   73篇
  2007年   82篇
  2006年   87篇
  2005年   57篇
  2004年   46篇
  2003年   49篇
  2002年   49篇
  2001年   31篇
  2000年   27篇
  1999年   18篇
  1998年   18篇
  1997年   17篇
  1996年   15篇
  1995年   19篇
  1994年   12篇
  1993年   13篇
  1992年   7篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   10篇
  1985年   7篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
排序方式: 共有1648条查询结果,搜索用时 15 毫秒
11.
This work is inspired by the sudden resurgence of the submersed aquatic vegetation (SAV) bed in the Chesapeake Bay (USA). Because the SAV bed occurs at the mouth of the Bay's main tributary (Susquehanna River), it plays a significant role in modulating sediment and nutrient inputs from the Susquehanna to the Bay. Previous model studies on the impact of submersed aquatic vegetation on the development of river mouth bars lacked a complete mechanistic understanding. This study takes advantage of new advances in 3D computational models that include explicit physical-sedimentological feedbacks to obtain this understanding. Specifically, we used Delft3D, a state-of-the-art hydrodynamic model that provides fine-scale computations of three-dimensional flow velocity and bed shear stress, which can be linked to sediment deposition and erosion. Vegetation is modeled using a parameterization of hydraulic roughness that depends on vegetation height, stem density, diameter, and drag coefficient. We evaluate the hydrodynamics, bed shear stresses, and sediment dynamics for different vegetation scenarios under conditions of low and high river discharge. Model runs vary the vegetation height, density, river discharge, and suspended-sediment concentration. Numerical results from the idealized model show that dense SAV on river mouth bars substantially diverts river discharge into adjacent channels and promotes sediment deposition at ridge margins, as well as upstream bar migration. Increasing vegetation height and density forms sandier bars closer to the river mouth and alteration of the bar shape. Thus, this study highlights the important role of SAV in shaping estuarine geomorphology, which is especially relevant for coastal management. © 2019 John Wiley & Sons, Ltd.  相似文献   
12.
An assessment of the multibeam sonar data of the central Western Continental Margins of India has been carried out to evaluate the seafloor geomorphology and processes by examining the geomorphological attributes e.g., slope, sediments, structures, etc. associated with geomorphic features. The variation in relief and the features located in the region have been mapped and interpreted collectively by utilizing several geospatial mapping tools. The backscatter strength across the area, apparently congruent with the local relief, has helped to examine the sediment movement on the seafloor. The prominent features found in the region include faults, pockmarks, mounds, submarine terraces, and submerged fossil reefs. Several areas with varying topography engender comparable fractal dimension at short scale breaks, and the probability density functions (PDFs) utilizing backscatter data depicting overlapping classes. The present study highlights how fractals and scale break parameters can be utilized to determine the seafloor processes and associated sedimentological dynamics in a complex geographical environment with strong bottom currents, seasonal upwelling, and faulted structure. The role and impact of the various geomorphic processes on the reworking of sediment movement and the overall progression of the seafloor morphology has been revealed for the first time in this part of the ocean bottom.  相似文献   
13.
为查明文昌B凹陷油气富集差异性的原因,基于断裂展布和形成期次、构造样式组合、构造演化和断层活动的差异等标志,建立了差异伸展- 走滑机制,识别出19洼为伸展- 强走滑、14洼为伸展- 中等走滑、30洼为伸展- 弱走滑。差异伸展- 走滑作用控制了优质烃源岩的展布和供烃方向,控制输导体系类型和运移动力,提供物源通道和改造储层,还控制了圈闭类型和力学性质。进一步深化了走滑增压理论,基于先存断裂形态、伸展应力场右旋演化和应变差异,建立了走滑增压圈闭识别方法,识别出S型增压、右行左阶增压、斜交型增压3种走滑增压构造。研究表明,文昌B凹陷的油气富集受伸展- 走滑构造背景、源- 运时空配置关系所控制,强—中等走滑变形、发育优质中深湖源岩的文昌19洼和14洼是油气富集区。该研究成果成功推动了文昌凹陷近期的多个勘探发现。  相似文献   
14.
Stratigraphy is a fundamental component of floodplain heterogeneity and hydraulic conductivity and connectivity of alluvial aquifers, which affect hydrologic processes such as groundwater flow and hyporheic exchange. Watershed-scale hydrological models commonly simplify the sedimentology and stratigraphy of floodplains, neglecting natural floodplain heterogeneity and anisotropy. This study, conducted in the upper reach of the East River in the East River Basin, Colorado, USA, combines point-, meander-, and floodplain-scale data to determine key features of alluvial aquifers important for estimating hydrologic processes. We compare stratigraphy of two meanders with disparate geometries to explore floodplain heterogeneity and connectivity controls on flow and transport. Meander shape, orientation, and internal stratigraphy affected residence time estimates of laterally exchanged hyporheic water. Although the two meanders share a sediment source, vegetation, and climate, their divergent river migration histories resulted in contrasting meander hydrofacies. In turn, the extent and orientation of these elements controlled the effective hydraulic conductivity and, ultimately, estimates of groundwater transport and hyporheic residence times. Additionally, the meanders’ orientation relative to the valley gradient impacted the hydraulic gradient across the meanders—a key control of groundwater velocity. Lastly, we combine our field data with remotely sensed data and introduce a potential approach to estimate key hydrostratigraphic packages across floodplains. Prospective applications include contaminant transport studies, hyporheic models, and watershed models. © 2019 John Wiley & Sons, Ltd.  相似文献   
15.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
16.
17.
不同厚度饱和砂土中群桩结构动力响应试验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
液化土中桩基础动力响应规律一直是工程抗震领域关注的热点问题。本文基于非液化砂土和不同厚度饱和砂土中的2×2群桩结构模型振动台试验,通过输入一定峰值加速度和频率的正弦波,对群桩在非液化土层和两种不同厚度饱和砂土层中的横向动力响应特性进行振动台试验研究。研究结果表明:在正弦波输入情况下,非液化砂土中群桩承台加速度和位移时程与台面输入时程相比,波形变化规律与峰值大小均相差不大;而对两种不同厚度饱和砂土中承台加速度和位移峰值放大较多,在相对较薄的饱和砂土中群桩承台加速度峰值较台面输入放大了1.83倍,较台面输出位移峰值放大了1.58倍;在相对较厚的饱和砂土中承台加速度和位移峰值则分别放大了2.18倍和1.91倍,说明在相同输入条件下,较厚的饱和砂土在发生液化后群桩承台的动力响应更加显著。  相似文献   
18.
Geomorphology has increasingly considered the role of biotic factors as controls upon geomorphic processes across a wide range of spatial and temporal scales. Where timescales are long (centennial and longer), it has been possible to quantify relationships between geomorphic processes and vegetation using, for example, the pollen record. However, where the biotic agents are fauna, longer term reconstruction of the impacts of biological activity upon geomorphic processes is more challenging. Here, we review the prospect of using environmental DNA as a molecular proxy to decipher the presence and nature of faunal influences on geomorphic processes in both present and ancient deposits. When used appropriately, this method has the potential to improve our understanding of biotic drivers of geomorphic processes, notably fauna, over long timescales and so to reconstruct how such drivers might explain the landscape as we see it today. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
19.
River corridors exhibit landforms nested within landforms repeatedly down spatial scales. In Pasternack et al. ( 2018 ), a new, scale‐independent, hierarchical river classification was developed that uses five landform types to map the domains of a single fluvial process – flow convergence routing – at each of three–five spatial scales. Given those methods, this study investigated the details of how flow convergence routing organizes nested landform sequences. The method involved analyzing landform abundance, sequencing, and hierarchical nesting along the 35 km gravel/cobble lower Yuba River in California. Independent testing of flow convergence routing found that hydraulic patterns at every flow matched the essential predictions from classification, substantiating the process–morphology link. River width and bed elevation sequences exhibit large, nonrandom, and linked oscillations structured to preferentially yield wide bars and constricted pools at base flow and bankfull flow. At a flow of 8.44 times bankfull, there is still an abundance of wide bar and constricted pool landforms, but larger topographic drivers also yield an abundance of nozzle and oversized landforms. The nested structure of flow convergence routing landforms reveals that base flow and bankfull landforms are nested together within specific floodprone valley landform types, and these landform types control channel morphodynamics during moderate to large floods. As a result, this study calls into question the prevailing theory that the bankfull channel of a gravel/cobble river is controlled by in‐channel, bankfull, and/or small flood flows. Such flows may initiate sediment transport, but they are too small to control landform organization in a gravel/cobble river with topographic complexity. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
20.
曲线桥梁抗震特性模拟分析对于曲线桥梁隔震、减震有着重要意义。基于隔震曲线桥梁设计过程中的特点,通过非线性水平弹簧单元对铅芯橡胶支座双向非线性的能力进行模拟,根据SAP2000科学选择强震观测地震波,并考量曲线桥梁本身存在的特性对桥梁振动特性产生的影响,针对隔震曲线桥梁在不同等级地震下振动特征进行模拟分析,其中,通过隔震曲线桥梁铅芯橡胶支座模型的构建和梁桥不同等级地震计算模型、输入地震波与传感器量测等步骤得到的模拟结果为:不同地震波与加速度峰值输入过程中,地震动较小下的支座水平刚度比较大,且结构相对稳定;地震幅值增大时,桥梁支座水平刚度减小,且支座的恢复力位移滞回变化曲线面积比较大,能够更多地将地震输入能量消散掉,减小能量不断向曲线桥梁上方传递的速度,可有效减轻地震反应,起到隔震的效果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号